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Abstract: A statistical model is developed in order to simulate the melt composition in electric
arc furnaces (EAFs) with respect to uncertainties in (1) scrap composition, (2) scrap weighing and
(3) element distribution factors. The tramp element Cu and alloying element Cr are taken into
account. The model enables simulations of a charge program as well as backwards estimations of
the element concentrations and their variance in scrap. In the backwards calculation, the maximum
likelihood method is solved by considering three cases corresponding to the involved uncertainties.
It is shown that the model can estimate standard deviations for elements so that the real values lie
within the estimated 95% confidence interval. Moreover, the results of the model application in each
target product show that the estimated scrap composition results in a melt composition, which is in
good agreement with the measured one. The model can be applied to increase our understanding of
scrap chemical composition and lower the charged material cost and carbon footprint of the products.

Keywords: scrap; tramp element; uncertainty; standard deviation; maximum likelihood; EAF

1. Introduction

Mixing raw materials is critical in scrap-based plants, such as electric arc furnaces
(EAFs), where meeting chemical composition targets and a cost-efficient mix of raw materi-
als should be simultaneously taken into account. Mathematical models developed to study
the mixing of raw materials can be classified into the following groups: (i) mass–energy
balance, (ii) optimization and (iii) statistical models. The mass and energy balance models
are divided into static and dynamic models and used to calculate energy consumption, melt
chemical composition and tapping time [1–4]. In the calculations, the scrap composition is
assumed to be known, and uncertainties are not taken into account.

The raw material optimization models can be classified into deterministic and stochastic
models [5–7]. In a linear deterministic optimization model developed by Lahdelma et al. [5],
safety margins are considered to account for uncertainties in the scrap composition. The
element concentration and its variance were estimated by applying the ordinary and re-
cursive least squares and maximum likelihood methods. Additionally, several stochastic
models have been developed to include uncertainties in scrap materials by using chance
constraint (CC) programming. In chance constraint optimization, the constraint fulfillment
under uncertainties is expressed by probability estimations. Gaustad et al. [6] developed a
chance constraint model in which the production cost is minimized subject to probability
constraints for lower and upper limits of a target product. It is assumed that element consid-
erations are normally distributed in each scrap material. The constraints are written for the
normally distributed element concentration, and the variance of the chemical composition
of the different types of scrap is known. The variances can be estimated by methods such as
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the random sampling analysis (RSA), which is followed by optical emission spectroscopy
determinations [8].

Some statistical models use process data to predict scrap properties [9,10]. Birat et al. [9]
developed a model to estimate the average concentration of tramp elements in scrap by
solving linear regression equations. The scrap compositions were related to the melt
compositions through the raw material recipe data and yields of the heats. The partial
least squares-based method was applied in a model developed by Sandberg et al. [10], in
which the scrap properties were estimated by using EAF process data. A scrap chemical
composition was calculated for a “pure heat”, which corresponds to a heat charged by
100% of that scrap type. The Cu content in different types of scrap was estimated by a
95% confidence interval. The reliability of the results was studied by checking if the scrap
portion in the mix is close to one in a pure heat simulation of a specific scrap type. The
results showed that the method is applicable when there is a correlation between a scrap
and other scrap types and the target product chemical composition.

Uncertainties are not limited to scrap composition as described above, but they involve
all measurements from loading scrap to tapping the liquid steel. In this study, the aim is to
develop a statistical model as a calculation tool that can mainly be used in an EAF plant to
deal with the uncertainties in steel scrap analysis. Furthermore, it should deal with lack of
scrap analysis and facilitate production planning of a heat to meet the target composition. In
doing this, the tramp element copper in scrap is taken into account. This element is difficult
to remove from steel, and exceeding the maximum allowed concentration can result in
detrimental effects on final products, such as reducing ductility and causing hot cracks [11].
Thus, it is important to evaluate the copper concentration and its dispersion in different
types of charged scrap. This importance is described by Gyllenram et al. [12] by obtaining a
relationship between the quality cost, confidence interval and percent of low-quality scrap
with high Cu content (with an average of 0.3 and standard deviation of 0.03), which can
be used to determine the risk percent lying outside the target product limits. Moreover,
identifying the Cu content can lead to a lower charging of high-purity raw materials. This
is clearly demonstrated by charge optimizations conducted for two hypothetical scenarios
by using the web-based software RAWMATMIX®(Kobolde & Partners AB, Stockholm,
Sweden) [13,14]. The main input data for these are listed in the Appendix A. The real
copper content in a scrap type is considered to be 0.1%, and the content considered by
a hypothetical steel plant is 0.3%. Therefore, in the optimizations, the copper content is
assumed to be 0.1% and 0.3% in the first and second scenario, respectively. The results show
that pig iron is added to dilute the melt in order to not exceed the maximum concentration
of copper in the target product, as shown in Table 1. This results in an increase in material
cost and scope 3 carbon footprint by 74 USD/tm and 638 kgCO2eq/tm, respectively.

Table 1. Cost and scope 3 carbon footprint results for two scenarios of copper content assumptions in a scrap type.

Scenario Actual Cu in
Scrap (%)

Assumed Cu
in Scrap (%)

Scrap Amount
(kg)

Pig Iron
Amount (kg)

Material Cost
(USD/tm)

Carbon Footprint
Scope 3

(kgCO2eq/tm)

1 0.1 0.1 102,301 0 238 9
2 0.1 0.3 68,027 34,561 300 647

Moreover, the uncertainties with respect to the alloying element chromium are also
investigated. Determining the content of alloying elements in scraps contributes to a
planned material recipe that makes use of such elements. This leads to a lower usage of
primary alloys, with high upstream carbon footprint values, which consequently reduces
the costs and the carbon footprint of products.

The developed statistical model simulates the melt composition by taking into ac-
count different uncertainties involved in the EAF process. The model uses the maximum
likelihood method to estimate variances in scrap chemical composition. This method was
briefly mentioned by Lahdelma et al. [5], while it is described here in detail. Addition-
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ally, the uncertainties involved in weighing of scrap and in element distribution factors
are included.

2. Model Description

The model is divided into two parts, namely (1) a simulation of a charge program
containing several heats and (2) a backward estimation of scrap composition. The model is
developed as a Java web application.

2.1. Simulation of a Charge Program

The melt chemical composition in an EAF is estimated for each heat in two following
process stages:

2.1.1. Scrap Simulation

The scrap composition is considered to be normally distributed. The concentration of
element i in scrap j is written as follows:

Ci,j = Ci,j + z σi,j (1)

where Ci,j is the average concentration of element i; σi,j is the standard deviation for element
i in material j; and z is a Gaussian random number, N(0,1).

2.1.2. Charge Program Simulation

The scrap simulation is conducted for each heat in a charge program. Then, the
melt chemical composition, Ci,k, for each heat k is calculated as follows by using the
loading/weighing accuracy of scrap and the distribution factor accuracy (σdi

):

Ci,k = 0.01
Mi,m

Mtot
(2)

where Mi,m is the mass of element I in the melt and Mtot is the total mass of the melt,
which can be expressed as follows:

Mi,m = Midi (3)

Mtot = ∑
i

Mi,m (4)

where di is the distribution factor of element i between the melt and slag, and Mi is the
total element mass in scrap, which can be estimated by the average distribution factor for
element i, di, as follows:

di = di + z σdi
, 0 ≤ di ≤ 1 (5)

Mi = ∑
j

0.01 Mj ∑
i

Ci,j (6)

where
Mj = Mj,crane + zσw (7)

Mj,crane = Mj,recipe + zσl (8)

where σw and σl are the weighing and loading accuracies (kg), respectively. Moreover,
Mj,crane and Mj,recipe are the amount of material j weighted by crane and according to recipe
of a specific steel grade, respectively.
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2.2. Backward Estimation of Scrap Composition

First, the Lawson and Hanson non-negative least squares (NNLS) method [15] is used
to estimate the scrap composition, which is an optimal solution, C, such that the following
relationship is valid [15]:

min‖XC− Y‖2
2 , C ≥ 0 (9)

where X is a k× j matrix and contains amounts of scrap in a charge program with k heats
and j scrap types, and Y is a column vector (k× 1) containing a mass of the element in the
melt in each charge. yi,k is obtained by multiplying the melt weight by the concentration
of element i in the melt in charge k. The results, vector C, are the absolute estimated
concentrations of elements in scrap excluding uncertainties.

X =

 x1,1 · · · x1,j
...

. . .
...

xk,1 · · · xk,j

 , Y =

 yi,1
...

yi,k

 , C =

 Ci,1
...

Ci,j

 (10)

In the next method, in addition to the average concentration of element, the standard
deviations for the concentration of each element in scrap are included as unknown parame-
ters. It is assumed that element concentrations in scrap are normally distributed. In doing
this, the three cases described below are taken into account. The loading accuracy is set to
zero for all cases.

2.2.1. Uncertainties in Scrap Chemical Composition

The distribution factor for element i is considered to be constant, σdi
= 0, and uncer-

tainty in the raw material weighing is zero so that Mj = Mj,recipe. The following equation is
solved for each element, in which σi,j = σj, yi,k = yk and Ci,j = Cj:

di

 x1,1 · · · x1,j
...

. . .
...

xk,1 · · · xk,j


 C1

...
Cj

+ di

 x1,1 z1,1 σ1+ · · · +x1,jz1,jσj
...

. . .
...

xk,1zk,1 σ1+ · · · +xk,jzk,jσj

 =

 y1
...

yk

 (11)

This equation is rewritten as follows: x1,1 · · · x1,j
...

. . .
...

xk,1 · · · xk,j


 C1

...
Cj

+ ε =
1
di

 y1
...

yk

 (12)

where Var(ε) = diag
{

x1,1
2σ1

2 + x1,2
2σ2

2 + . . . + x1,j
2σj

2, . . . , xk,1
2σ1

2 + x1,2
2σ2

2 + . . .+

xk,j
2σj

2
}

since cov
(

xl,m zl,m σ1, xk,jzk,jσj

)
= 0 ∀l 6= k & m 6= j.

2.2.2. Uncertainties in Scrap Chemical Composition and Weighing

Besides variances in the scrap chemical composition, uncertainty in scrap weighing is
taken into account, σw 6= 0, which is assumed to be a constant value. Thus, Var(ε) is writ-
ten as Var(ε) = diag

{
x1,1

2σ1
2 + . . . + x1,j

2σj
2 + C1

2σw
2 + . . . + Cj

2σw
2 + σ1

2σw
2 + . . .+

σj
2σw

2, . . . , xk,1
2σ1

2 + . . . + xk,j
2σj

2 + C1
2σw

2 . . . + Cj
2σw

2 + σ1
2σw

2 + . . . + σj
2σw

2}
2.2.3. Uncertainties in Scrap Chemical Composition and Element Distribution Factors

In this scenario, variances in the element distribution factors are included, σdi
6= 0,

while σw = 0. Therefore, the following equation is solved:

(
di + zk σdi

) x1,1 · · · x1,j
...

. . .
...

xk,1 · · · xk,j


 C1

...
Cj

+
(

di + zk σdi

) x1,1 z1,1 σ1+ · · · +x1,jz1,jσj
...

. . .
...

xk,1zk,1 σ1+ · · · +xk,jzk,jσj

 =

 y1
...

yk

 (13)
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where Var(ε) = diag
{
(dix1,1)

2
σ1

2 + . . . + (dix1,j)
2
σj

2 + (σdi
x1,1)

2σ1
2 . . . + (σdi

x1,j)
2σj

2

+
(
C1σdi

x1,1 + . . . + Cjσdi
x1,j
)2, . . . ., (dxk,1)

2
σ1

2 + . . . + (dxk,j)
2
σj

2 + (σdi
xk,1)

2σ1
2 + . . .+

(σdi
xk,j)

2σj
2 +

(
C1σdi

xk,1 + . . . + Cjσdi
xk,j

)2
}

Due to the normally distributed concentrations, the parameters C and σ can be esti-
mated by using the maximum likelihood method [16]. In fact, the parameters of probability
function that maximize the log-likelihood function are estimated. The log-likelihood func-
tion is written in the matrix form by taking the logarithm over the probability density
function and ignoring constant terms [16]:

logl = −1
2

log(|Var(ε)|)− 1
2
(Y− XC)T(Var(ε))−1(Y− XC) (14)

Then, a bound constraint quasi-Newton method in R software environment v 3.6.2
(R Foundation for Statistical Computing, Vienna, Austria) [17], which is a variant of
the L-BFGS-B (limited memory Broyden–Fletcher–Goldfarb–Shanno Bound constrained)
method [18], is used to estimate the values for different parameters of this function, at
which the objective function, −logl, reaches its minimum values.

3. Model Validation and Application

The model is first validated by using hypothetical data. Two variations of standard
deviations are applied to Cu concentration for six different types of scrap. The distribution
factor for Cu is 1, so the distribution accuracy for Cu is not taken into account, σdi

= 0.
Tables 2 and 3 show the average concentrations and standard deviations for Cu in different
scrap types, respectively. In cases 1 and 2, σw = 0; σw = 10 kg in case 3; and σw = 50 kg in
case 4.

Table 2. Average concentration of Cu and Cr in scrap, CCu,j and CCr,j in six scrap types (xj).

j 1 2 3 4 5 6

CCu,j (%) 0.05 0.05 0.14 0.3 0.2 0.05
CCr,j (%) 0.15 0.2 1.43 0.2 0.1 1

Table 3. Standard deviations for Cu and Cr in each scrap type, standard deviations for weighing and
standard deviation for Cr distribution factor.

Case σCu,1 σCu,2 σCu,3 σCu,4 σCu,5 σCu,6 σw (kg) σdCu(%)

1 0.02 0.02 0.02 0.02 0.02 0.02 0 0
2 0.02 0.015 0.04 0.01 0.03 0.025 0 0
3 0.02 0.015 0.04 0.01 0.03 0.025 10 0
4 0.02 0.015 0.04 0.01 0.03 0.025 50 0

Case σCr,1 σCr,2 σCr,3 σCr,4 σCr,5 σCr,6 σw (kg) σdCr(%)

5 0.01 0.04 0.03 0.04 0.02 0.3 0 0
6 0.01 0.04 0.03 0.04 0.02 0.3 0 0.05

For Cr, two cases (5 and 6) are considered. In case 5, only variances in scrap composi-
tion are applied, and in case 6, the standard deviation in Cr distribution factor is included,
so that σdCr = 0.05, while σw = 0 in both cases. The average concentration of Cr and its
standard deviation in six scrap types are shown in Tables 2 and 3, respectively.

For each case, charge program simulation is performed for 7000 heats. Then, in
backward estimation of scrap composition, the bootstrap resampling method is used to
generate several datasets from the heats.

In the next step, the model is used to investigate the accuracy of scrap composition
used by a real plant and to estimate uncertainties in element concentrations in scrap and
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uncertainties in distribution factors of elements in each target product. The flowchart
in Figure 1 demonstrates the steps involved in the model application. First, the afore-
mentioned model is used to simulate a charge program by using heat data from an EAF,
including approximately 700 heats and 10 scrap types. The input data include the heat
recipe as well as scrap and melt chemical compositions. The melt analysis is carried out
using the optical emission spectrometry technique in the plant. Since there is no disper-
sion on the element concentration in scrap, the standard deviations are set to zero for all
elements, σi,j = 0. The predicted results of the melt chemical compositions are compared
to those of the measured melt compositions for Cu and Cr. If the difference between the
average concentration and standard deviation of each element in the melt in the calculated
and measured results is considerable (

∣∣Ci,calc − Ci,m
∣∣ > 0.01 and

∣∣σi,calc − σi,m
∣∣ > 0.009)

in a target product, the backwards calculations (NNLS and ML methods) are applied to
estimate the element concentration and its uncertainty in each scrap type. Thereafter,
these results are used as scrap composition inputs in the model to calculate a new melt
composition. Three target products (A, B and C) are taken into account.
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4. Results and Discussion

The results include the model validation and its application. In the first part, the results
of the backwards estimation of the Cu and Cr concentrations and standard deviation in
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scrap are compared to the real input values. Afterwards, the model is used to investigate the
accuracy of Cu and Cr concentrations in the reported scrap compositions in an EAF plant.

4.1. Model Validations Results

The results of the backward calculations of the Cu concentration and the standard
deviations for the six cases are shown in Tables 4 and 5 using the NNLS and maximum
likelihood methods (ML), respectively. The difference between the average concentration
of Cu in scrap estimated by these two methods is low, namely between 0 and 0.003.
Furthermore, the difference between the real concentrations and calculated ones is between
0 and 0.014, obtained by using the results in Tables 4 and 5 and inputs from Table 2. The
differences between the calculated (by the ML method) and real values for the standard
deviations are between 0 and 0.009, which can be obtained by using the results in Table 5
and inputs in Table 3. It can be concluded that the ML method can be used to estimate
standard deviations for Cu, meaning that the maximum difference between the calculated
and real values is around 0.01.

Table 4. Calculated average concentration of Cu in scrap, CCu,j, in six scrap types (xj) using the
NNLS method.

Cases x1 x2 x3 x4 x5 x6

1 0.049 0.051 0.142 0.302 0.201 0.042
2 0.048 0.048 0.145 0.303 0.202 0.055
3 0.049 0.049 0.142 0.301 0.204 0.046
4 0.049 0.049 0.140 0.302 0.199 0.065
5 0.151 0.195 1.427 0.196 0.104 0.993
6 0.147 0.204 1.435 0.209 0.104 0.943

Table 5. Calculated mean concentration of Cu in scrap, CCu, and its standard deviation, σCu, in six
scrap types (xj) using the maximum likelihood method for nine cases.

Cases Variable x1 x2 x3 x4 x5 x6

1
CCu 0.05 0.051 0.139 0.303 0.201 0.043
σCu 0.02 0.023 0.017 0.017 0.021 0.019

2
CCu 0.048 0.048 0.145 0.303 0.201 0.055
σCu 0.021 0.011 0.035 0.010 0.029 0.027

3
CCu 0.049 0.052 0.143 0.302 0.204 0.046
σCu 0.021 0.018 0.036 0.002 0.027 0.021

4
CCu 0.050 0.048 0.141 0.301 0.197 0.064
σCu 0.019 0.008 0.041 0.013 0.028 0.016

5
CCu 0.151 0.195 1.426 0.196 0.103 1.011
σCu 0.01 0.04 0.031 0.038 0.018 0.299

6
CCu 0.150 0.202 1.429 0.204 0.097 0.994
σCu 0.010 0.041 0.011 0.018 0.012 0.297

For Cr, the differences between the mean concentration of Cr estimated by the ML and
NNLS methods vary mainly between 0 and 0.01. However, for case 6 and material 6, the dif-
ference is higher, around 0.05, when it is calculated using the results in Tables 4 and 5. The
comparison of these results with the real values in Table 2 shows that the estimated average
value obtained using the ML method is close to the real values, with a difference of only
0.006. The estimated standard deviations differ from the real values when there is standard
deviation on the Cr distribution factor. Specifically, the maximum difference is around 0.02,
calculated by using data from Tables 3 and 5.

Figures 2 and 3 show the comparison between the measured values for Cu and Cr
concentrations and their estimated mean values by considering a 95% confidence interval.
It can be seen that the real values lie in the confidence interval for all cases.
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Figure 2. Estimated mean standard deviations for concentration of Cu (σCu) with a 95% confidence interval in scrap types,
x1–x6 for cases 1–4, (a–d).

4.2. Model Application Results

The density plot of the Cu concentration for the target product A, including 103 heats,
is shown in Figure 4. The melt chemical composition is almost normally distributed and
has an estimated skewness of ≈0.17 and a kurtosis of ≈2.86.

As described in Figure 1, first, a charge program simulation is conducted using the
reported scrap composition for target product A. This resulted in an average concentration
of Cu in the melt equal to 0.1, which is around 0.015 higher than the measured value. This
indicates the inaccuracy in the Cu concentration in the charged scrap. This also shows
that the reported scrap composition is not the average value, but it is considered at a
confidence interval. Since

∣∣CCu,calc − CCu,m
∣∣ > 0.01, the next step is to estimate the Cu

concentration in scrap by using the NNLS method, as suggested in Figure 1. The melt
weight is estimated by summing of charged materials and assuming a metallic yield of 0.96.
The comparison between the reported Cu concentrations and the estimated values is shown
in Figure 5 for 10 scrap types. The new scrap analysis is applied in the charge program
simulation, which results in a better predicted concentration of Cu for target product A,
so that

∣∣CCu,calc − CCu,m
∣∣ ≈ 0.0019. This can be seen in Figure 6a, which illustrates the

normal distribution plots for Cu concentrations in the melt. R denotes the primary results
obtained by the reported scrap chemical composition. Then, the Cu concentration in scrap
is estimated using the ML method. The estimated average values and standard deviations
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(shown as ±σ) are presented in Figure 5. The estimated standard deviation is high in some
scrap types, especially in x2, x4 and x9. It can be seen that the reported Cu content is
much higher than the estimated value in scrap x4, around 0.1%. The overestimation of Cu
content can lead to a material recipe that effects the cost and carbon footprint, as described
in Table 1. These values are used in the charge program simulation to estimate the melt
composition as depicted by the green lines in Figure 6.
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types, x1–x6 for cases 5 and 6, (a,b).
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Figure 6. Comparison between the concentrations of Cu calculated using the reported scrap compositions (R) and the
calculated scrap compositions using the NNLS and ML methods. Data are presented for three target products: A, B and
C, (a–c).

The results of the Cu dispersion in the melt, σCu,m ≈ 0.015, are in very good agreement
with the measured data. More specifically, σCu,calc ≈ 0.014, so that

∣∣σCu,calc − σCu,m
∣∣ ≈ 0.001,

as depicted in Figure 6a. The same procedure is applied to target products A and B, as seen
in Figure 6b,c.

The results of the estimated Cr concentrations using NNLS and ML (shown with ±σ)
in 10 scrap types are compared to those reported in Figure 7. When the reported Cr
concentration in scrap is used in a simulation, the average concentrations of Cr in the melt
are close to the measured concentrations. This can be seen in the normal distribution plots
for the Cr concentration for all target products, as shown in Figure 8, (Measured and R).
However, the differences among the standard deviations of Cr concentrations in the melt
are 0.03, 0.04 and 0.01 for products A, B and C, respectively. Therefore, the Cr concentration
is estimated using the NNLS and ML methods. In the ML method, σdi

is assigned to 0.1 for
target products A and B and 0.08 for target product C. This means that the third approach
in the backward calculation of the scrap composition is applied. The results of the melt
composition using the scrap composition estimated by the NNLS method results in higher
differences in standard deviations of Cr concentrations in the melt, as depicted in the blue
line in Figure 8. By using the inputs from ML methods, the differences decrease to 0.003,
0.008 and 0.004 for products A, B and C, respectively, as shown in Figure 8a–c.
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Figure 7. Comparison between the reported Cr concentration and calculated ones in scrap (x1–x10).
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Figure 8. Comparison between the concentration of Cr calculated using the reported scrap composition (R) and the
calculated scrap composition using the NNLS and ML methods. Data are given for three target products: A, B and C, (a–c).

4.3. Use of the Model

Today’s pursuit of continuous improvement in terms of cost, quality and environmen-
tal performance requires the application of powerful calculation tools. The model described
here can be applied to increase our knowledge about the uncertainties in raw material
analysis and other measurements. This knowledge contributes to designing raw material
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recipes that result in lower material costs and CO2 emissions (as outlined in Table 1), and
it forms a basis for determining the optimal risk level.

5. Conclusions

A model was developed with the aim to investigate uncertainties involved in scrap
melting plants, including (i) scrap composition, (ii) weighing and (iii) distribution factors.
The maximum likelihood method was applied to predict these uncertainties by assuming
that they are normally distributed. The results of the model validation showed that the
real values for the average and standard deviation for the concentration of each element in
scrap lie within a nominal confidence interval, and the model can be used to determine
variances in scrap composition.

The model was then applied to real heat data of an EAF in order to examine the
accuracy of the reported scrap chemical compositions with a focus on the tramp element
Cu and the alloying element Cr. The differences between the mean and standard deviations
in Cu and Cr concentrations in three target products and the simulated values suggested
that uncertainties in the scrap composition and Cr distribution factor exist. The use
of the predicted new scrap concentrations and variances in the model resulted in melt
chemical compositions that are in better agreement with the measured ones. It is finally
suggested that the model can be used in a continuous improvement process at a plant to
improve the raw material risk assessment and also lower the input raw material costs and
CO2 emissions.
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Appendix A

Table A1. Input data used for calculations shown in Table 1.

Furnace capacity (tonne) 100
Maximum concentration of copper in target product (%) 0.2
Scrap Price (USD/kg) 0.23
Scrap upstream carbon footprint (kg CO2eq/kg) 0.007
Pig iron price (USD/kg) 0.41
Pig iron upstream carbon footprint (kg CO2eq/kg) 1.85
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